metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dipyridinebis[4,4,4-trifluoro-1-(4-nitrophenyl)butane-1,3-dionato]copper(II)

Ling Fan,^{a,b} Dun-Jia Wang^{a,c}* and Jing Zheng^c

^aHubei Key Laboratory of Bioanalytical Techniques, Hubei Normal University, Huangshi 435002, People's Republic of China, ^bCollege of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China, and ^cDepartment of Chemistry and Environmental Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China

Correspondence e-mail: dunjiawang@163.com

Received 1 June 2007; accepted 17 June 2007

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.004 Å; R factor = 0.047; wR factor = 0.108; data-to-parameter ratio = 14.7.

In the centrosymmetric title compound, $[Cu(C_{10}H_5F_{3})]$ $NO_4_2(C_5H_5N_2)$, the Cu^{II} atom is hexacoordinate and lies in a square plane formed by four O atoms. Two pyridine molecules complete the coordination in *trans* positions. In the crystal structure there are intramolecular $C-H\cdots F$ and intermolecular C-H···O hydrogen bonds.

Related literature

For related literature, see: Shavaleev et al. (2003); Sloopa et al. (2002).

Experimental

Crystal data

 $[Cu(C_{10}H_5F_3NO_4)_2(C_5H_5N)_2]$ $M_r = 742.04$ Monoclinic, $P2_1/c$ a = 12.5939(9)Å b = 8.7423 (6) Å c = 14.1918 (10) Å $\beta = 106.245 \ (1)^{\circ}$

V = 1500.13 (18) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 0.83 \text{ mm}^-$ T = 292 (2) K $0.20 \times 0.10 \times 0.10$ mm

Data collection

Bruker APEX CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2001a) $T_{\min} = 0.852, T_{\max} = 0.922$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	223 parameters
$wR(F^2) = 0.108$	H-atom parameters constrained
S = 0.97	$\Delta \rho_{\rm max} = 0.38 \ {\rm e} \ {\rm \AA}^{-3}$
3278 reflections	$\Delta \rho_{\rm min} = -0.61 \text{ e } \text{\AA}^{-3}$

12289 measured reflections

 $R_{\rm int} = 0.080$

3278 independent reflections

2298 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Cu1-N2	2.0197 (19)	Cu1-O3	2.2483 (18)
Cu1-O4	2.0443 (18)		
$N2^{i}-Cu1-N2$	180	N2-Cu1-O3	90.34 (7)
N2-Cu1-O4 ⁱ	88.70 (8)	O4 ⁱ -Cu1-O3	95.04 (7)
N2-Cu1-O4	91.30 (8)	O4-Cu1-O3	84.96 (7)
O4 ⁱ -Cu1-O4	180	O3-Cu1-O3 ⁱ	180
$N2^{i}-Cu1-O3$	89.66 (7)		

Symmetry code: (i) -x + 1, -y + 2, -z.

Table 2 Hydrogen-bond geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C8 - H8 \cdots F2$ $C5 - H5 \cdots O1^{ii}$	0.93 0.93	2.33 2.54	2.723 (3) 3.293 (4)	105 138
	. 5 1			

Symmetry code: (ii) $x, -y + \frac{5}{2}, z - \frac{1}{2}$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2001b); software used to prepare material for publication: SHELXTL.

The authors are grateful to the Hubei Normal University and the Natural Science Foundation of the Educational Commission of Hubei Province (Nos. J200522002 and Z200622001) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ER2036).

References

Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS Inc., Madison, Wisconsin, USA.

Shavaleev, N. M., Moorcraft, L. P., Pope, S. J. A., Bell, Z. R., Faulkner, S. & Ward, M. D. (2003). Chem. Eur. J. 9, 5283-5291.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Sheldrick, G. M. (2001a). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2001b). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.

Sloopa, J. C., Bumgardnerb, C. L. & Loehle, W. D. (2002). J. Fluorine Chem. 118, 135-147.

supplementary materials

Acta Cryst. (2007). E63, m1980 [doi:10.1107/S1600536807029649]

Dipyridinebis[4,4,4-trifluoro-1-(4-nitrophenyl)butane-1,3-dionato]copper(II)

L. Fan, D.-J. Wang and J. Zheng

Comment

1,3-Diketones are invaluable chelating ligand for various lanthanide and transition metals in material chemistry (Shavaleev *et al.*, 2003). In this paper, we report the crystallography structure of the title compound, $Cu(C_{10}H_5O_4F_3N)_2(C_5H_5N)_2$. In the title molecular structure (I), Cu^{II} is coordinated by two 4,4,4-trifluoro-1-(4-nitrophenyl)butane-1,3-dione oxygen atoms and two nitrogen atoms of pyridines, forming a distorted octahedron coordination geometry (Fig. 1).

Experimental

The ligand 4,4,4-trifluoro-1-(4-nitrophenyl)butane-1,3-dione was synthesized from reported literature(Sloopa *et al.*, 2002). The coordination compounds were prepared according to the following procedure: The ligand (0.52 g, 2.0 mmol) and pyridine (0.16 g, 2.0 mmol) in 20 ml hot acetone was added slowly to the $CuCl_2 \cdot 2H_2O$ (0.17 g, 1.0 mmol) solution of 10 ml water. The mixture was stirred for 3 h. After filtration, the green solution was allowed to stand at room temperature. Green block-shaped crystals suitable for X-ray analysis were obtained after several days in 55% yield.

Refinement

All the H atoms were placed at their idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. View of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Dipyridinebis[4,4,4-trifluoro-1-(4-nitrophenyl)butane-1,3-dionato]copper(II)

Crystal data [Cu(C₁₀H₅F₃NO₄)₂(C₅H₅N)₂] $M_r = 742.04$ Monoclinic, $P2_1/c$ Hall symbol: -P2ybc a = 12.5939 (9) Å

 $F_{000} = 750$ $D_x = 1.643 \text{ Mg m}^{-3}$ Mo Ka radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2698 reflections $\theta = 2.8-22.9^{\circ}$

<i>b</i> = 8.7423 (6) Å	$\mu = 0.83 \text{ mm}^{-1}$
c = 14.1918 (10) Å	T = 292 (2) K
$\beta = 106.2450 \ (10)^{\circ}$	Block, green
$V = 1500.13 (18) \text{ Å}^3$	$0.20\times0.10\times0.10~mm$
Z = 2	

Data collection

Bruker APEX CCD area-detector diffractometer	3278 independent reflections
Radiation source: fine-focus sealed tube	2298 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.080$
T = 292(2) K	$\theta_{\text{max}} = 27.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2001a)	$h = -15 \rightarrow 16$
$T_{\min} = 0.852, T_{\max} = 0.922$	$k = -11 \rightarrow 11$
12289 measured reflections	$l = -16 \rightarrow 18$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H-atom parameters constrained
$wR(F^2) = 0.108$	$w = 1/[\sigma^2(F_o^2) + (0.0497P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.97	$(\Delta/\sigma)_{\rm max} < 0.001$
3278 reflections	$\Delta \rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$
223 parameters	$\Delta \rho_{\rm min} = -0.61 \ {\rm e} \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct	T dia dia mandra mandra

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

y

x

Ζ

 $U_{iso}*/U_{eq}$

Cu1	0.5000	1.0000	0.0000	0.03413 (15)
C11	0.5305 (2)	0.7430 (3)	0.13701 (19)	0.0436 (6)
H11	0.4932	0.8076	0.1690	0.052*
C14	0.6375 (2)	0.5529 (3)	0.0444 (2)	0.0535 (8)
H14	0.6738	0.4893	0.0110	0.064*
C12	0.5706 (3)	0.6059 (4)	0.1804 (2)	0.0565 (8)
H12	0.5608	0.5784	0.2407	0.068*
C13	0.6253 (3)	0.5107 (3)	0.1328 (3)	0.0597 (8)
H13	0.6538	0.4179	0.1609	0.072*
C15	0.5954 (2)	0.6912 (3)	0.0050 (2)	0.0426 (6)
H15	0.6035	0.7195	-0.0558	0.051*
C9	0.3050 (2)	0.9483 (3)	-0.16549 (19)	0.0391 (6)
C10	0.2652 (3)	0.9380 (3)	-0.2776 (2)	0.0497 (7)
C7	0.2538 (2)	1.0169 (3)	-0.0145 (2)	0.0391 (6)
C4	0.1679 (2)	1.0904 (3)	0.02552 (18)	0.0367 (6)
C5	0.0934 (2)	1.1942 (3)	-0.0283 (2)	0.0511 (8)
Н5	0.0922	1.2145	-0.0929	0.061*
C6	0.0200 (2)	1.2689 (4)	0.0128 (2)	0.0546 (8)
Н6	-0.0301	1.3396	-0.0236	0.065*
C1	0.0226 (2)	1.2369 (3)	0.10764 (19)	0.0428 (7)
C2	0.0945 (2)	1.1325 (3)	0.1627 (2)	0.0503 (7)
H2	0.0946	1.1116	0.2270	0.060*
C3	0.1663 (2)	1.0594 (3)	0.1210 (2)	0.0469 (7)
Н3	0.2151	0.9874	0.1576	0.056*
C8	0.2297 (2)	0.9966 (3)	-0.1179 (2)	0.0432 (6)
H8	0.1582	1.0175	-0.1560	0.052*
F1	0.31560 (18)	1.0415 (2)	-0.31809 (13)	0.0820 (6)
F2	0.15767 (15)	0.9595 (2)	-0.31617 (13)	0.0709 (5)
F3	0.28914 (16)	0.8027 (2)	-0.30905 (13)	0.0776 (6)
N2	0.54337 (16)	0.7864 (2)	0.05053 (15)	0.0355 (5)
N1	-0.0522 (2)	1.3223 (3)	0.1521 (2)	0.0583 (7)
O4	0.40646 (14)	0.9163 (2)	-0.13156 (13)	0.0436 (5)
O3	0.34342 (15)	0.9824 (2)	0.04590 (14)	0.0462 (5)
01	-0.0459 (2)	1.2980 (3)	0.23779 (17)	0.0787 (7)
O2	-0.1149 (2)	1.4130 (4)	0.1026 (2)	0.1013 (10)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0334 (3)	0.0330 (2)	0.0349 (3)	0.00422 (19)	0.0077 (2)	0.00201 (19)
C11	0.0448 (16)	0.0424 (15)	0.0437 (16)	0.0004 (12)	0.0124 (14)	0.0023 (13)
C14	0.0515 (19)	0.0434 (16)	0.060 (2)	0.0106 (14)	0.0055 (16)	-0.0050 (15)
C12	0.065 (2)	0.0530 (19)	0.0460 (18)	-0.0076 (16)	0.0066 (16)	0.0139 (15)
C13	0.062 (2)	0.0375 (16)	0.066 (2)	0.0076 (15)	-0.0041 (18)	0.0094 (16)
C15	0.0391 (15)	0.0410 (15)	0.0460 (17)	0.0018 (12)	0.0093 (13)	-0.0018 (13)
C9	0.0403 (16)	0.0327 (13)	0.0424 (17)	-0.0009 (11)	0.0084 (14)	0.0016 (12)
C10	0.0504 (19)	0.0483 (16)	0.0490 (19)	0.0025 (14)	0.0118 (16)	-0.0075 (15)
C7	0.0368 (15)	0.0344 (14)	0.0438 (16)	-0.0056 (11)	0.0076 (13)	0.0008 (12)

supplementary materials

C4	0.0318 (14)	0.0381 (14)	0.0363 (15)	-0.0022 (11)	0.0033 (12)	-0.0016 (12)
C5	0.0516 (18)	0.068 (2)	0.0329 (16)	0.0151 (15)	0.0096 (14)	0.0078 (14)
C6	0.0487 (19)	0.065 (2)	0.0448 (18)	0.0191 (15)	0.0050 (15)	0.0042 (15)
C1	0.0384 (16)	0.0453 (16)	0.0439 (17)	-0.0041 (12)	0.0103 (14)	-0.0059 (13)
C2	0.062 (2)	0.0518 (17)	0.0394 (16)	0.0014 (15)	0.0190 (15)	0.0049 (14)
C3	0.0523 (18)	0.0455 (15)	0.0394 (16)	0.0096 (13)	0.0071 (14)	0.0091 (13)
C8	0.0361 (15)	0.0489 (16)	0.0414 (16)	0.0013 (12)	0.0053 (13)	-0.0034 (13)
F1	0.1064 (17)	0.0922 (15)	0.0497 (12)	-0.0276 (12)	0.0255 (12)	0.0104 (10)
F2	0.0570 (12)	0.1016 (15)	0.0449 (10)	0.0159 (10)	-0.0007 (9)	-0.0109 (10)
F3	0.0984 (15)	0.0669 (12)	0.0623 (12)	0.0208 (11)	0.0139 (11)	-0.0242 (10)
N2	0.0330 (12)	0.0333 (11)	0.0376 (12)	0.0026 (9)	0.0057 (10)	0.0032 (10)
N1	0.0515 (17)	0.0661 (18)	0.0602 (19)	0.0030 (14)	0.0202 (15)	-0.0093 (15)
O4	0.0390 (11)	0.0445 (11)	0.0465 (12)	0.0073 (8)	0.0106 (9)	0.0032 (9)
O3	0.0411 (11)	0.0515 (12)	0.0426 (11)	0.0077 (9)	0.0061 (10)	0.0037 (9)
01	0.0898 (18)	0.0966 (19)	0.0572 (15)	0.0128 (14)	0.0331 (14)	-0.0094 (13)
O2	0.091 (2)	0.132 (3)	0.086 (2)	0.064 (2)	0.0332 (17)	0.0184 (19)

Geometric parameters (Å, °)

Cu1—N2 ⁱ	2.0197 (19)	C10—F2	1.324 (3)
Cu1—N2	2.0197 (19)	C10—F1	1.326 (3)
Cu1—O4 ⁱ	2.0443 (18)	C10—F3	1.328 (3)
Cu1—O4	2.0443 (18)	С7—ОЗ	1.249 (3)
Cu1—O3	2.2483 (18)	С7—С8	1.424 (4)
Cu1—O3 ⁱ	2.2483 (18)	C7—C4	1.500 (3)
C11—N2	1.337 (3)	C4—C5	1.373 (4)
C11—C12	1.377 (4)	C4—C3	1.388 (3)
C11—H11	0.9300	C5—C6	1.387 (4)
C14—C13	1.357 (4)	С5—Н5	0.9300
C14—C15	1.375 (4)	C6—C1	1.366 (4)
C14—H14	0.9300	С6—Н6	0.9300
C12—C13	1.372 (4)	C1—C2	1.366 (4)
C12—H12	0.9300	C1—N1	1.475 (3)
С13—Н13	0.9300	C2—C3	1.369 (4)
C15—N2	1.332 (3)	С2—Н2	0.9300
C15—H15	0.9300	С3—Н3	0.9300
С9—О4	1.264 (3)	С8—Н8	0.9300
С9—С8	1.375 (4)	N1—O2	1.198 (3)
C9—C10	1.531 (4)	N1—O1	1.215 (3)
N2 ⁱ —Cu1—N2	180.0	F2—C10—C9	114.9 (2)
N2 ⁱ —Cu1—O4 ⁱ	91.30 (8)	F1—C10—C9	110.7 (2)
N2—Cu1—O4 ⁱ	88.70 (8)	F3—C10—C9	111.3 (2)
N2 ⁱ —Cu1—O4	88.70 (8)	O3—C7—C8	124.6 (2)
N2—Cu1—O4	91.30 (8)	O3—C7—C4	116.9 (2)
O4 ⁱ —Cu1—O4	180.0	C8—C7—C4	118.4 (2)
N2 ⁱ —Cu1—O3	89.66 (7)	C5—C4—C3	118.5 (2)
N2—Cu1—O3	90.34 (7)	C5—C4—C7	121.7 (2)

O4 ⁱ —Cu1—O3	95.04 (7)	C3—C4—C7	119.7 (2)
O4—Cu1—O3	84.96 (7)	C4—C5—C6	120.6 (3)
N2 ⁱ —Cu1—O3 ⁱ	90.34 (7)	С4—С5—Н5	119.7
N2—Cu1—O3 ⁱ	89.66 (7)	С6—С5—Н5	119.7
O4 ⁱ —Cu1—O3 ⁱ	84.96 (7)	C1—C6—C5	118.8 (3)
O4—Cu1—O3 ⁱ	95.04 (7)	С1—С6—Н6	120.6
O3—Cu1—O3 ⁱ	180.0	С5—С6—Н6	120.6
N2—C11—C12	122.3 (3)	C2—C1—C6	122.0 (3)
N2—C11—H11	118.9	C2-C1-N1	119.6 (2)
C12—C11—H11	118.9	C6—C1—N1	118.4 (3)
C13—C14—C15	119.0 (3)	C1—C2—C3	118.5 (3)
C13—C14—H14	120.5	C1—C2—H2	120.8
C15—C14—H14	120.5	С3—С2—Н2	120.8
C13—C12—C11	118.7 (3)	C2—C3—C4	121.5 (3)
C13—C12—H12	120.6	С2—С3—Н3	119.2
C11—C12—H12	120.6	С4—С3—Н3	119.2
C14—C13—C12	119.4 (3)	C9—C8—C7	124.6 (3)
C14—C13—H13	120.3	С9—С8—Н8	117.7
С12—С13—Н13	120.3	С7—С8—Н8	117.7
N2-C15-C14	122.6 (3)	C15—N2—C11	118.0 (2)
N2—C15—H15	118.7	C15—N2—Cu1	121.74 (17)
C14—C15—H15	118.7	C11—N2—Cu1	119.88 (17)
O4—C9—C8	130.0 (3)	O2—N1—O1	123.4 (3)
O4—C9—C10	112.7 (2)	O2—N1—C1	118.7 (3)
C8—C9—C10	117.2 (2)	O1—N1—C1	118.0 (3)
F2-C10-F1	106.4 (3)	C9—O4—Cu1	122.10 (16)
F2—C10—F3	106.9 (2)	C7—O3—Cu1	118.85 (16)
F1—C10—F3	106.3 (2)		
N2-C11-C12-C13	-0.2 (4)	C14—C15—N2—C11	-1.2 (4)
C15-C14-C13-C12	0.6 (5)	C14—C15—N2—Cu1	171.9 (2)
C11—C12—C13—C14	-0.6 (5)	C12-C11-N2-C15	1.2 (4)
C13—C14—C15—N2	0.4 (4)	C12—C11—N2—Cu1	-172.1 (2)
O4—C9—C10—F2	175.3 (2)	O4 ⁱ —Cu1—N2—C15	-121.37 (19)
C8—C9—C10—F2	-7.8 (4)	O4—Cu1—N2—C15	58.63 (19)
O4—C9—C10—F1	-64.2 (3)	O3—Cu1—N2—C15	143.59 (19)
C8—C9—C10—F1	112.7 (3)	O3 ⁱ —Cu1—N2—C15	-36.41 (19)
O4—C9—C10—F3	53.7 (3)	O4 ⁱ —Cu1—N2—C11	51.61 (19)
C8—C9—C10—F3	-129.4 (3)	O4—Cu1—N2—C11	-128.39 (19)
O3—C7—C4—C5	148.8 (3)	O3—Cu1—N2—C11	-43.43 (19)
C8—C7—C4—C5	-28.8 (4)	O3 ⁱ —Cu1—N2—C11	136.57 (19)
O3—C7—C4—C3	-27.9 (3)	C2—C1—N1—O2	-179.7 (3)
C8—C7—C4—C3	154.5 (2)	C6—C1—N1—O2	2.3 (4)
C3—C4—C5—C6	1.5 (4)	C2-C1-N1-01	1.1 (4)
C7—C4—C5—C6	-175.3 (3)	C6-C1-N1-O1	-176.8 (3)
C4—C5—C6—C1	-0.4 (5)	C8—C9—O4—Cu1	-22.4 (4)
C5—C6—C1—C2	-0.7 (5)	C10—C9—O4—Cu1	154.05 (17)

supplementary materials

C5—C6—C1—N1	177.2 (3)	N2 ⁱ —Cu1—O4—C9	-56.13 (19)
C6—C1—C2—C3	0.5 (4)	N2—Cu1—O4—C9	123.87 (19)
N1—C1—C2—C3	-177.3 (3)	O3—Cu1—O4—C9	33.64 (19)
C1—C2—C3—C4	0.6 (4)	O3 ⁱ —Cu1—O4—C9	-146.36 (19)
C5—C4—C3—C2	-1.6 (4)	C8—C7—O3—Cu1	31.7 (3)
C7—C4—C3—C2	175.2 (3)	C4—C7—O3—Cu1	-145.79 (17)
O4—C9—C8—C7	-1.8 (5)	N2 ⁱ —Cu1—O3—C7	49.69 (18)
C10—C9—C8—C7	-178.1 (2)	N2—Cu1—O3—C7	-130.31 (18)
O3—C7—C8—C9	-5.6 (4)	O4 ⁱ —Cu1—O3—C7	140.97 (18)
C4—C7—C8—C9	171.8 (2)	O4—Cu1—O3—C7	-39.03 (18)
Symmetry codes: (i) $-x+1$, $-y+2$, $-z$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C8—H8…F2	0.93	2.33	2.723 (3)	105
C5—H5····O1 ⁱⁱ	0.93	2.54	3.293 (4)	138
Symmetry codes: (ii) $x, -y+5/2, z-1/2$.				

sup-6

Fig. 1